Waveguide Propagation Modes and Quadratic Eigenvalue Problems

André Nicolet,
Institut Fresnel, UMR CNRS 6133,
Université Paul Cézanne
Domaine Universitaire de Saint-Jérôme case 162
F13397 Marseille cedex 20 France
Tel: +33 4 91 28 87 73
Fax: +33 4 91 67 44 28
E-mail:andre.nicolet@fresnel.fr

Prof. Christophe Geuzaine,
Case Western Reserve University
Mathematics Department, Yost 220
10900 Euclid Ave Cleveland,
OH 44106, USA
Tel: (216) 368-2909
Fax: (216) 368-5163
E-mail: christophe.geuzaine@case.edu

Abstract

This paper presents a direct approach to determine numerically the propagation modes in waveguides via a finite element method. Given a pulsation ω, a quadratic eigenvalue problem is solved to obtain the propagation constant β. The main advantage of the new method lies in its generality: it allows the computation of β from a given ω, which is important to cope with the chromatic dispersion of optical materials, and it can take into account general anisotropic materials—a crucial advantage for the modeling of twisted microstructured optical fibres.

Topic: A2 Algorithms